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Component-Based Localization in Sparse
Wireless Networks
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Abstract—Localization is crucial for wireless ad hoc and sensor
networks. As the distance-measurement ranges are often less than
the communication ranges for many ranging systems, most com-
munication-dense wireless networks are localization-sparse. Con-
sequently, existing algorithms fail to provide accurate localization
supports. In order to address this issue, by introducing the con-
cept of component, we group nodes into components so that nodes
are able to better share ranging and anchor knowledge. Operating
on the granularity of components, our design, CALL, relaxes two
essential restrictions in localization: the node ordering and the an-
chor distribution. Compared to previous designs, CALL is proven
to be able to locate the same number of nodes using the least infor-
mation. We evaluate the effectiveness of CALL through extensive
simulations. The results show that CALL locates 90% nodes in a
network with average degree 7.5 and 5% anchors, which outper-
forms the state-of-the-art design Sweeps by about 40%.

Index Terms—Component-based, finite mergence, localization,
node-based, ranging-model-based estimation (RMBE).

I. INTRODUCTION

L OCATION in wireless networks is critical for both net-
work operation and data interpretation [1]. Practically, it

is difficult to equip each node with a positioning device. Instead,
only a few nodes, called anchors, know their locations. Other
nodes estimate their locations through internode measurements
from the anchors. Most existing localization algorithms require
the network have a high density and sufficient number of an-
chors before computing node locations. Localization in sparse
networks with a few anchors is not fully addressed [2]. Indeed,
a sparse network for localization is often dense in communica-
tion, as the distance-measurement ranges are typically much less
than that of communication range for many ranging systems [3].

Eren et al. [4], [5] investigate the theoretical conditions for
localization in general networks. They show that a network can
be uniquely localized if and only if its corresponding grounded
graph [4] fulfills the following three conditions: 1) redundantly
rigid; 2) triconnected; and 3) having three anchors embedded,
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denoted as RRT-3B [5]. For a partially localizable network,
RRT-3B can identify most localizable nodes by recursively par-
titioning the network into globally rigid parts [5]. Thus, the
RRT-3B becomes a criterion to evaluate the performance of lo-
calization algorithms. To the best of our knowledge, there is
no scheme that can explicitly achieve the amount of localizable
nodes under RRT-3B conditions.

The state-of-the-art algorithm of approaching to the capacity
of RRT-3B is Sweeps [2]. Sweeps utilizes the concept of finite
localization to relax the node participating conditions from tri-
lateration to bilateration. Due to its dependence on each single
node to estimate the localizability locally, however, Sweeps is
subject to the restriction on the anchor distribution. If no node
can find at least two anchors among its direct neighborhood, the
algorithm cannot be initialized. Also, Sweeps requires that the
network have a bilateration ordering, which is not always true in
sparse networks. Indeed, a localizable network is not necessarily
to be a bilateration network, thus Sweeps often fails in many
actually localizable networks [2], [6]. Such limitations result in
more serious consequences in localization-sparse networks.

To address this issue, we propose a Component-bAsed Lo-
calization aLgorithm, CALL, in which the component acts as
another basic unit for localization. Instead of locating each indi-
vidual node separately, CALL groups nodes into small compo-
nents, and then merges the components iteratively into a bigger
one until it is realizable in a plane. By offering many advan-
tages over node-based approaches, such as favoring the large-
scale localization information aggregation, facilely exploiting
the anchor proximity and underlying network model, CALL can
locate most localizable nodes as RRT-3B identifies. Further-
more, if more information is available about the ranging model,
such as the geometric representations of the measurement range,
CALL can even approach the RRT-3B upper limitation and lo-
cate more nodes.

Major contributions of this work are as follows.
1) We introduce the concept of component and present a com-

ponent-based algorithm, CALL, which improves the suc-
cess ratio of localization in sparse networks.

2) We propose a mechanism called finite mergence to stitch
components. Furthermore, we form the basic anchor re-
quirement conditions to realize components. These mech-
anisms serve as the basis of this design.

3) By exploiting the ranging-model-based estimation
(RMBE) schemes, we reduce the states maintained at
each node and make more nodes localizable, i.e., 20%
in average, even though some of them do not follow the
RRT-3B condition.

4) We propose a new metric, least information requirement
(LIR), to analyze the performance of existing localization
algorithms. We show our CALL achieves the best result
as yet under the LIR criterion. Large-scale simulations are
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conducted to examine the performance of CALL. The re-
sults show that this algorithm can accurately locate 90%
nodes in a network with average degree 7.5 by 5% anchors,
which outperforms the state-of-the-art design Sweeps by
about 40%.

The rest of this paper is organized as follows. We discuss ex-
isting studies in Section II and describe the details of CALL
scheme in Section III. We present the theoretical foundations in
Section IV and formally analyze its performance in Section V.
We evaluate the performance of CALL in Section VI and con-
clude the work in Section VII.

II. RELATED WORK

Many studies have focused on localization in wireless and
ad hoc networks [7], mainly falling into two categories: range-
based [2], [8] and range-free [1], [11]. Range-free designs do
not rely on measurement hardware, but normally require high
network density [1]. This work focuses more on range-based
designs for sparse networks, so we discuss the classical range-
based algorithms that address the network or anchor sparseness
problem.

Savarese et al. [12] propose a virtual-coordinate-based
algorithm TERRAIN to address the sparse anchor problem.
TERRAIN constructs a virtual coordinate system on each
anchor and takes the advantage of the property that the virtual
coordinate holds the distance information between each node
pair. The essential principle used by TERRAIN is trilatera-
tion. By using virtual coordinates on each anchor, TERRAIN
extends the ranging distance of anchors and makes each node
triangulate to the enlarged anchors.

Some researchers utilize local maps to localize nonanchor
nodes [13], [14]. They first use distance measurements between
neighboring nodes to construct local maps, and then stitch
them together to form a global map. Components in our design
share similar notions with local maps. Nevertheless, our design
is different with them in terms of mergence and realization.
In local-map-based methods, two maps are combined by their
common node, which means the common node locations need
to be known in their respective maps. Hence, it is difficult to
stitch local maps in sparse networks due to the lack of known
location common nodes. In our design, components are merged
by the interconnected edges between the components. We
will show that merging by three interconnected edges is the
necessary condition for generating a rigid local map. Clearly, in
the view of components, merging local maps by common nodes
is a special case of merging by the interconnected edges. Such
difference significantly affects the applicability of the designs
in sparse networks.

Savvides et al. [15] attempt to reduce the information require-
ment when facing partial sparseness. They use collaborative
multilateration among neighbors to compensate the ranging in-
formation shortage, which localizes nodes by forming an over-
determined system of equations with a unique solution set. Col-
laborative multilateration performs better than trilateration in
sparse networks. The disadvantage is that the collaboration is
restricted in neighbors, so that the performance gain is limited.

As a pioneer work, Sweeps [2] introduces the concept of finite
localization, which holds all candidate positions of each node
and prunes incompatible ones when other nodes join the pro-
cedure. Sweeps achieves pretty good results in sparse networks.

Given proper anchor distribution, Sweeps is able to locate nodes
in a globally rigid region [2], but may fail to localize the regions
that contain few anchors. Compared to Sweeps, our CALL is
able to identify most of such regions and locate almost all of
the localizable ones. Besides relaxing the restrictions of anchor
proximity and node ordering, by using finite mergence, the lo-
calized nodes of CALL are a superset of that of Sweeps. Also,
CALL can exploit the restriction of ranging models. This makes
CALL generate much smaller state sets and even be able to lo-
cate nodes that do not follow RRT-3B.

III. COMPONENT-BASED LOCALIZATION

Before the detailed discussion on our design, we introduce
the main idea of component-based localization.

A. Preliminary

For a given network, we generate a distance graph
, where vertices denote nodes in the network

and an edge exists if nodes , can measure the mutual
distance between them. Associated with each edge, we use a
function : to denote the distance value. Here-
inafter, we use the term edge to denote distance measurement.
We assume there are nodes, called anchors, knowing their
locations in advance. The anchors are labeled from 1 to , and
the left location-unknown nodes are labeled from
to , where is the total number of nodes in the network. The
physical location of node is denoted by .

A realization of a network is a mapping from nodes to co-
ordinates in two-dimensional space, : , such that

for all and
for all , where denotes the Euclidean
distance between coordinates and . Analogously, we
define the concept of realization on the subgraph of , and the
only difference is that we do not differentiate the rotations, trans-
lations, and reflections of the mapping when operating on a sub-
graph. A node is localizable if and only if its image is unique for
all realizations of . A node is finitely localizable if and only
if the cardinality of its image set is finite for all realizations of

. If a localization algorithm can generate a unique result for a
localizable node, we say the node is localized by the algorithm.
If a localization algorithm can generate a candidate position set
that contains all of the possible positions of a finitely localizable
node, we say the node is finitely localized by the algorithm.

We formally define the concept of component as follows.
Given a distance graph , a component is a set of nodes that
have a finite number of ways to be realized. A component is
globally rigid if and only if there is a unique realization in a
plane. An isolated node in is a node that does not belong to
any components. For two components and , if there is an
edge such that , , edge is an
interconnected edge between components and . We also
use interconnected edge to denote the edge between a compo-
nent and an anchor. Compared to traditional local maps, com-
ponents are essentially different in the way of component mer-
gence and realization. Components are merged by the intercon-
nected edges between the components. Moreover, components
are realized through both in-component anchors and the inter-
connected edges between the component and anchors. Hence,
we say a component is realizable if it can determine its phys-
ical layout by using the anchor information. We will show the
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Fig. 1. Example of component-based localization. (a) Distance graph (b) Component generation. (c) Component mergence. (d) Component realization.

basic requirements for component mergence and realization in
Section IV.

Before introducing the details of our component-based lo-
calization algorithm, we further explain the concept of compo-
nents using an example. We show the distance graph of a net-
work in Fig. 1(a), where the squares denote anchors and the cir-
cles represent nonanchor nodes. If we adopt node-based algo-
rithms, we cannot localize any node in this network, as there
is no single node that can obtain enough (at least two) distance
measurements to the anchors. In contrast, if we utilize a com-
ponent-based algorithm, we first partition the network into two
globally rigid components, denoted as components and in
Fig. 1(b). In the view of components, components and are
not directly realizable, so we merge the two components through
the interconnected edges and generate a new component, de-
noted as , as shown in Fig. 1(c). After such a mergence,
component is realizable through the anchors. As a re-
sult, all nodes in component are localized simultane-
ously, as shown in Fig. 1(d).

B. BCALL Algorithm

We first present the basic version of this design, BCALL,
which terminates in polynomial time. We will then present the
advanced version, CALL, which cannot guarantee to terminate
in polynomial time, but with better performance.

Both BCALL and CALL have three major operations:
component generation, component mergence, and component
realization.

1) Step 1: Component Generation: Component generation
partitions the network into globally rigid components and iso-
lated nodes. A node can only join one component, such that
components do not share any common nodes. After component
generation, each node either belongs to a component or becomes
an isolated node. In this step, anchor nodes and nonanchor nodes
are equally treated.

Each component has a local coordinate system that indicates
the relative position of each node in the component. To initialize
the local coordinate system, we initially select a component to
be a triangle in , as triangles are the simplest globally rigid
graphs. Accordingly, the local coordinate system of a compo-
nent is generated according to the relative position of the ver-
tices in the initial triangle. Other nodes then join the component
and compute their local coordinates through trilateration. By
adopting trilateration iteratively, we expand the newly generated
component as large as possible while keeping global rigidity.

For each component, if it is realizable, we go to Step 3: com-
ponent realization. Otherwise, those nonrealizable components
will merge with other components or isolated nodes and perform

component mergence. Merging components potentially makes
nonrealizable components capable to be realized because: 1) the
mergence causes the merged components to aggregate both their
nodes and their anchor information; and 2) the realization re-
quirements for a component are independent of the number of
nodes in the component.

2) Step 2: Component Mergence: Component mergence in-
tegrates two components into one by the interconnected edges.
BCALL requires the resultant component to be globally rigid,
thus it must follow the requirements of Theorem 1 in Section IV.
After merging, the local coordinate systems of the two compo-
nents must be consistent. This is guaranteed by converting the
local coordinate system of a component to that of the other one.

Component mergence is an iterative process. Some mer-
gence can make other components or isolated nodes capable of
merging into the resultant component. Component mergence
process terminates when no such mergence can continue or the
resultant component is realizable.

3) Step 3: Component Realization: Component realization
converts the local coordinate system of the target component to
the physical coordinate system. For BCALL, it requires the re-
alization to be unique, so the anchor information must uniquely
determine the physical layout of the component (Corollary 1 in
Section IV). In mathematics, a coordinate system conversion is
generally denoted by a rotation matrix (with possible reflection)

and a translation vector . For each node in the target com-
ponent, component realization directly converts its local coor-
dinate to the physical position by , where

denotes the physical location of the node and denotes
the local coordinate of the node.

C. CALL Algorithm

Compared to BCALL, CALL relaxes the requirements of
component mergence and realization. First, CALL does not
demand the resultant of mergence to be globally rigid. Second,
CALL does not require component realization to be unique.
That is, two components can merge if the resultant component
has a finite number of ways to be realized, and a component can
be realized if it can convert its local coordinates to a finite set of
physical positions by the anchor information. These relaxations
have several impacts on the localization performance. First,
CALL generates more realizable components than BCALL by
the relaxed mergence. Second, the relaxation of component re-
alization makes CALL recognize more realizable components
than BCALL. Third, potentially, all the finitely localized nodes
can be converted to uniquely localized nodes, as CALL will
prune the extra candidate positions of the nodes by consistency
check in each step.
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Fig. 2. Exhaustive result set of a component mergence. (a) Physical locations of the target components. (b)–(d) Other results that fulfill the intercomponent distance
constraints.

The relaxations cause nodes to have several candidate posi-
tions. CALL records these positions in the potential position set
at each node. The potential position set indicates all candidate
coordinates of the node in the local coordinate system or phys-
ical coordinate system.

CALL inserts an extra substep in each of the above operations
to check the consistency of the potential position sets. During
each mergence or realization, CALL enumerates all candidate
positions of each node in its potential position set. Not all of
the combinations of the candidate positions can generate valid
results under the distance constraints. We say an item is incom-
patible if no result can be obtained by this candidate position.
After mergence or realization, nodes will prune the incompat-
ible items in the potential position sets. There are two steps to
prune incompatible items. First, the reference nodes associated
with the interconnected edges can identify their incompatible
items after the mergence or realization. Second, if a node has
pruned some incompatible items, it will broadcast an update
message to its neighbors to inform the deleted items. The node
that receives the update message will then check the consistency
of the potential position set and prune their incompatible items.
By iteratively pruning the incompatible items, the potential po-
sition sets of all nodes will eventually be consistent with each
other. This mechanism guarantees that the consistency check
can prune all the incompatible items of the nodes in the same
component. We say a node or a node set is finalized if the size
of its potential position set is reduced to one.

Finally, all nodes belonging to the realized components are lo-
calized. By the items in the potential position set, we can directly
determine whether a node is uniquely localized. In Section IV,
we will show the rationale of the mergence and the realization.

Unfortunately, this procedure cannot guarantee to terminate
in polynomial time because the potential position set may grow
exponentially in the worst case.

D. Ranging-Model-Based Estimation

Previous discussion does not require any specific ranging
model. In practice, ranging measurement is distance-sensitive:
Nodes are often easy to know the distance to nearby neighbors,
while difficult for far away ones.

Assumptions on ranging model can further improve the per-
formance of CALL. For example, suppose the ranging model is

-QUDG [16]. That is, two nodes cannot measure the distance if
they are more than unit-distance apart, while they can measure
the distance if they are less than distance apart; otherwise,
there is a distance-related probability , where is the nor-
malized distance of the node pair. Define for

and for , then we uniformly use to describe
the probability that two nodes can measure their mutual dis-
tance. Given a candidate result (i.e., a result of component mer-
gence or realization), we define the confidence of a node pair as
the probability of whether or not the node pair can measure their
distance according to the ranging model. Clearly, if two nodes
can measure their mutual distance, they will follow the model,
and we do not need to estimate the confidence. Hence, we only
check the node pairs that cannot measure the mutual distances.
Consequently, if a node pair cannot measure the distance,
the confidence is , where is the normalized dis-
tance of the node pair in the candidate result. Furthermore, we
define the confidence of a candidate result to be the minimum
confidence of the node pairs. For each mergence or realization,
we can prune the candidate result if its confidence is below a pre-
defined threshold. We can even set the threshold value to zero,
which means that we only cut the results that conflict with the
ranging model. We call this enhancement ranging-model-based
estimation, or RMBE in short.

Take Fig. 2 as an example, which shows all candidate results
of a certain component mergence. This example is generated
under the -QUDG model [16], and the original graph is
case (a). We evaluate the confidence of all nonneighboring node
pairs. Apparently, except for graph (a), the confidence values of
the other candidate results are all 0, as there exists such node
pairs that are close enough to each other but cannot measure the
mutual distance in graphs (b)–(d). In other words, they conflict
with the ranging model, and we can prune these candidate re-
sults. In this example, the mergence is finalized by RMBE.

Given a proper ranging model, RMBE can significantly re-
duce the size of the potential position set at each node. Also,
RMBE can help to finalize some finitely localized nodes. As a
result, RMBE can improve the performance of localization al-
gorithms. Simulations in Section VI will show this as well.

IV. THEORETICAL FOUNDATIONS

In this section, we introduce the rationale of the rules for com-
ponent mergence and component realization. The proof of the
propositions is shown in [17].

Lemma 1: Two globally rigid components can merge into one
if: 1) there are at least three edges connecting the two compo-
nents; and 2) there are at least two vertices in each component
associated with these edges.

Theorem 1 (Mergence for BCALL): If two globally rigid
components can merge into one globally rigid component, there
are at least four edges connecting the two components, and
there are at least three vertices in each component associated
with these edges.
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Theorem 2 (Finite Mergence for CALL): Two components
can merge into one if: 1) there are at least three edges connecting
the two components; and 2) there are at least two vertices in each
component associated with these edges.

Theorem 3 (Finite Mergence for Isolated Nodes): A node can
be merged into a component by two edges connecting to the
component.

Theorem 4 (Realization for CALL): A component can be
realized to finite states by fulfilling at least one of following
conditions.

a) The component contains at least two anchors.
b) The component contains one anchor and a nonanchor

node sharing an edge with a realized node.
c) There are at least three edges connecting the component

with at least two distinct realized nodes, and there are
at least two vertices associated with these edges in the
component.

Corollary 1 (Realization for BCALL): A globally rigid com-
ponent can be uniquely realized by containing three distinct ver-
tices fulfilling one of the following conditions.

a) They are three anchors.
b) They are two anchors and a nonanchor node sharing an

edge with a realized node.
c) They are one anchor and two distinct nonanchor nodes

sharing two edges with two distinct realized nodes.
d) There are at least four independent edges connecting them

with at least three distinct realized nodes.

V. PERFORMANCE ANALYSES

In this section, we analyze the performance of CALL,
including the performance of component generation and the
overall algorithm.

A. Efficiency of Component Generation

As previously mentioned, all the initially generated compo-
nents are globally rigid. We need to examine whether CALL can
identify all the globally rigid parts in the component generation
step. Indeed, to identify all the globally rigid parts in a graph
is computationally intensive [5]. CALL minimizes this cost by
identifying the globally rigid parts with triangles only.

Lemma 2: If a graph contains no triangles, the maximum
number of edges it contains is , where is the number
of nodes it contains.

Proof: Let denote a graph with nodes that contains no
triangles; denotes the maximum number of edges in .
We use to denote the minimum degree of the nodes in

.
If we delete the node with minimum degree in , the gen-

erated graph will not contain triangles. Thus, the edges in this
graph cannot be greater than the value , so we have

, which means the bound of is
given by

Now we show that . If we assume
, the degree of each node in is beyond . Consider an

arbitrary edge in , the nodes associated with the edge have
more than neighbors. Hence, at least two of them are the same

node. Then, we find a triangle in . This conflicts with the
given condition. We rewrite the expression of
as follows:

Applying this result in the previous inequality, we have
.

Theorem 5: If a graph is globally rigid, it must contain at least
one triangle when the total number of nodes is below seven.

Proof: Supposing a graph with vertices, it contains no
triangles. The vertices need at least edges to be rigid
[4], so the graph needs at least edges to be redundantly
rigid [4]. By Lemma 2, the number of edges is not more than

, so we have . Solving this inequality, we get
. The minimum integer that fulfills the inequality

is .
The bound is tight in general graphs. Consider the example

of , which is globally rigid and contains no triangle. For the
QUDG graph, we get the following theorem.

Theorem 6: If a -QUDG graph is globally rigid, it must
contain a triangle when .

Proof: Let denote a graph with nodes. Take these
nodes as disks with radius 1. We investigate the total area

of these disks, denoted by .
If is globally rigid, it must contain at least edges.

Each edge in superposes two of the disks and will diminish
the total area at least , which is the overlapped area
of two unit circles with distance 1. Hence, we get

Simplifying this inequality, we obtain

We use to represent this upper bound.
If contains no triangles, we can compactly dispose the

nodes as illustrated in Fig. 3. If we further compress the area, it
must form triangles in the graph. Hence, this is the lower bound
of . Clearly, in this case, the region surrounded by the dashed
line is covered by the disks. We use the area of this region to
estimate the total area. We get

We use to represent this lower bound.
If no such can fulfill the two inequalities simultaneously,

must contain at least a triangle. Comparing the coefficient
of , we obtain the condition

Simplifying this inequality, we get

Now we verify the initial values. By Theorem 5, we only need
to consider the case . If , then ,

. The initial values fulfill our demand.
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Fig. 3. Compact disposition for minimum area.

Hence, under the condition , if a
-QUDG graph is globally rigid, it must contain at least one

triangle.

B. Performance of Localization Algorithms

To better analyze the performance of localization algorithms,
we introduce a heuristic metric, the LIR, for localizing a certain
number of nonanchor nodes in generic graphs [5]. Tradition-
ally, localization algorithms work on the given information and
compute the positions of a certain amount of nonanchor nodes.
The performance of a localization algorithm often refers to the
percentage of nonanchor nodes they localized. In LIR, however,
algorithms are given a set of nonanchor nodes, and we compare
their performance by how much information they require in the
ideal case to properly localize the given node set. Consequently,
LIR indicates the best an algorithm can do under a set of dis-
tance measurements. In addition, as the theoretical results also
focus on the least requirements, LIR provides a framework for
contrasting the performance of localization algorithms and the
theoretical results.

Proposition 1: Trilateration-based algorithms require at least
edges to properly locate nodes.

Proof: Each nonanchor node requires three edges in trilat-
eration, so that the least edges required for nodes are .

Proposition 2: Collaborative multilateration requires at least
edges to properly locate nodes.

Proof: Collaborative multilateration can proper locate two
nodes by five edges, so the least edges required for nodes are

.
Proposition 3: BCALL requires at least edges to

properly locate nodes.
Proof: BCALL can realize a component by four edges, and

three edges are needed to form a component. Hence, it needs
seven edges to proper localize three nodes, so the least edges
required for nodes are .

Proposition 4: RRT-3B requires at least edges to make
nodes localizable.

Proof: Supposing localizing a network with nonanchor
nodes and three anchors. The nodes need at least

edges to be rigid [4], thus it needs at least edges
to be redundantly rigid [4]. These edges contain three

edges between each anchor pair, so the least edges needed are
.

Proposition 5: Sweeps [2] requires at least edges to
properly locate nodes.

Proof: Supposing localizing a network with nodes, each
vertex is swept by at least edges [2], and an additional edge is
demanded to finalize the result. Hence, the least edges required
for nodes are .

Proposition 6: CALL requires at least edges to prop-
erly locate nodes.

Proof: CALL can realize a component finitely by three
edges and three edges are required to form a component. Thus
it needs six edges to finitely locate three nodes, and an addi-
tional edge is necessary to finalize the result. As a result, the
least edges required for nodes are .

Proposition 7: CALL with RMBE requires at least edges
to properly locate nodes.

Proof: As shown in Fig. 2, CALL with RMBE can locate
six nodes by 12 edges under -QUDG model. For a gen-
eral , we can construct a graph by duplicating this case.

Proposition 8: CALL can locate a superset of nodes when
compared to Sweeps.

Proof: CALL can operate on both components and nodes,
and Sweeps can be treated as an extreme case of CALL that re-
alizes one node on each step. Thus, all nodes located by Sweeps
are also localizable by CALL.

Note that the inverse proposition is not true. For the example
shown in Fig. 1, Sweeps fails on this graph because no nonan-
chor node can find two swept nodes [2].

To summarize, LIR is an effective metric for evaluating the
performance of localization algorithms. A tiny gap of LIR
value often means prominent performance disparity in sparse
networks. We will further examine this property in Section VI,
where CALL with RMBE gets significantly improved com-
pared toprevious designs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CALL by ex-
tensive simulations.

A. Experiment Setup

We compare CALL design to several state-of-the-art al-
gorithms: Sweeps [2], RRT-3B [5], MDS [13], [18], and
APIT [19], [20]. Sweeps is widely accepted as the best localiza-
tion algorithm in sparse networks, significantly outperforming
other trilateration-based algorithms [2]. RRT-3B provides a
sufficient and necessary condition to determine the localiz-
ability of networks, so it actually gives a general criterion for
all algorithms to compare their localization capability [2], [5].
MDS and APIT are also widely recognized as practical and
effective localization algorithms.

For the convenience of performance analysis later, we here
briefly discuss the main ideas of MDS, APIT, and our simula-
tion methodology. MDS can build the relative positions of nodes
through a complete matrix of the internode distances. As the
granularity of the node set is arbitrarily selected, MDS can be
implemented in a centralized [18] or distributed [13] manner. In
our simulations, we adopt MDS to build 1-hop local maps and
localize the network by the local-map stitching to show the per-
formance gain of using components instead of traditional local
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Fig. 4. Proportion of localized nodes against average degree. (a) Uniquely located nodes. (b) Finitely located nodes.

maps. APIT adopts point-in-triangulation test (PIT) to identify
whether a node is inside the triangle composed by three neigh-
boring anchors [19], [20]. It locates a node into a region by ag-
gregating the result of PITs, and takes the center of the region
as the estimated position of the node. As APIT requires a node
referring to several anchors simultaneously, we enlarge the mea-
surement range of anchors three times for APIT. Furthermore,
we define that a node is localized by APIT if: 1) it has at least
three nonanchor neighbors to accomplish each PIT; and 2) it ob-
tains at least one “in-triangle” result among the PITs.

We compare the four algorithms with all the three versions of
our algorithms: BCALL, CALL, and CALL-RMBE. BCALL
adopts unique mergence and realization only, thus it can ter-
minate in polynomial time. CALL performs finite mergence
and realization to maintain all candidate positions of the nodes.
CALL with RMBE, denoted by CALL-RMBE, extends CALL
by utilizing extra information of the ranging models. The con-
fidence threshold for RMBE is set to 0, thus we only prune the
results that conflict with the ranging model, i.e., the UDG model.

We generate uniformly random distributed networks of
200 nodes in a square region with diversified average degree.
We select a certain percentage of nodes as anchors, thus the
anchor distribution is also uniformly random. The average
degree is controlled through the distance measurement range,
and we further assume that the communication range is larger
than the distance measurement range. Hence, if a node pair
could measure the mutual distance, they can communicate
with each other. We repeat each experiment on 100 network
instances and report the average.

B. Localization Performance Against Network Density

In this experiment, we randomly distribute 200 nodes in a
square region and randomly select 5% of them as anchors. We
adopt an empirical formula to control the average degrees of the
network instances linearly. Then, we sort the results by the av-
erage degree and report the average in the batch of 100 network
instances. Fig. 4 reports the result, where the average degree
varies from 5 to 11 with 21 steps.

Fig. 4(a) shows the proportion of uniquely localized nodes
when the average degree enlarges. As analyzed in Section V, all
the algorithms perform in the reversed order of the LIR values.
The performance of distributed MDS indicates how a traditional
local-map-based algorithm performs in sparse networks. Hence,

the performance gap between MDS and BCALL shows the gain
of using components instead of traditional local-maps. Also,
for the nonpolynomial time complexity algorithms, CALL and
CALL-RMBE outperform the state-of-the-art design, Sweeps,
over all the tested ranges. Moreover, when the average degree is
beyond 9, the advantage of nonpolynomial algorithms becomes
trivial. This shows the boundary of whether it is necessary to
trade the computational cost for localization performance. APIT
performs poorly in all cases because APIT requires high anchor
density to perform PITs. With such sparse anchor distribution,
it will fail to localize most of the nodes in the network.

Fig. 4(b) shows the proportion of finitely localized nodes
against the average degree. We can see that a higher network
density leads to a lower proportion of finitely localizable nodes.
That is because nodes have higher probabilities to form glob-
ally rigid components in dense networks, and localizing nodes
in globally rigid components causes no ambiguities at all.

C. Localization Performance Against Anchor Density

In this experiment, we randomly distribute 200 nodes in a
square region with the average degree of about 6. We control
the anchor density by randomly selecting a certain percentage of
nodes as anchors. Fig. 5 plots the average result of 100 network
instances, when the anchor proportion varies from 3% to 10%.

Fig. 5(a) plots the proportion of uniquely localized nodes
where the anchor density enlarges. With the increase of an-
chor proportion, the performance of each algorithm linearly
increases. We can see that Sweeps benefits more from large
anchor density because it prefers the fact that anchors reside
closely so as to initialize the bilateration procedure. MDS gets
the lowest performance in this test. When the average degree
is 6, MDS cannot generate uniformly overlapped local maps.
Consequently, MDS cannot integrate the network into a global
map, but partitions the network into a set of small-scale local
maps. Hence, MDS can only localize these local maps that
contain at least three anchors.

Fig. 5(b) shows the proportion of finitely localized nodes
against anchor density. CALL localizes the largest number of
nodes in finite states since CALL can identify most globally
rigid parts as well as the finitely localizable nodes. The number
of finitely localized nodes decreases when the anchor density
increases. The inherent reason is that the total amount of finitely
localizable nodes in a network is reduced when more anchors
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Fig. 5. Proportion of located nodes against anchor density. (a) Uniquely located nodes. (b) Finitely located nodes.

Fig. 6. Cumulative distribution of the possibility. (a) Number of candidate positions for each single node. (b) Average number of candidate positions in each
network instance. (c) Maximum number of candidate positions in each network instance.

exist. In contrast, the number of finitely localized nodes by
Sweeps is not affected much by anchor density. Sweeps typi-
cally localizes a whole globally rigid region [2] and localizes
nodes on the border of this region finitely, so the number of
finitely localized nodes is related to the size of such a region.
Nevertheless, the size of such a region is determined by the
network density, and the anchor density has little impact on it.

D. Distribution of the Number of Candidate Positions

The worst-case complexity could be exponential in the
number of nodes for Sweeps, CALL, and CALL-RMBE, thus
we conduct this experiment to investigate the distribution on
the number of candidate positions. In this experiment, we ran-
domly distribute 200 nodes in a square region with the average
degree about 6. Then, we randomly select 10% of the nodes as
anchors. Fig. 6 reports the result of 1000 network instances.
Note that the x-coordinate in each graph is logarithmic.

Fig. 6(a) plots the cumulative distribution of the number of
candidate positions for each single node. All the algorithms
uniquely localize over 88% of nodes. Moreover, CALL gener-
ates a bit larger position sets than Sweeps. The reason is that
CALL can locate more nodes in finite states as shown in pre-
vious experiments.

Fig. 6(b) plots the cumulative distribution of the average
number of the candidate positions in each network instance.
The average number of candidate positions for each algorithm

is less than four over 90% cases. For the average number of
candidate positions, CALL and Sweeps are also at the same
level.

Fig. 6(c) plots the cumulative distribution of the maximum
number of the candidate positions among the nodes in each net-
work instance. The maximum number for each algorithm is less
than 64 in about 90% of cases. CALL gets a bit higher maximum
number as it finitely localizes more nodes than Sweeps, and the
combinatorial explosion becomes more serious in this case.

Overall, CALL-RMBE incurs absolutely low computational
cost, while CALL and Sweeps are of the same level in all
aspects.

VII. CONCLUSION

We propose the concept of components as well as a compo-
nent-based approach, CALL, to address the localization issue
in sparse wireless ad hoc and sensor networks. We form basic
rules for operations on components and design RMBE to further
improve the performance of this approach. Theoretical analysis
and simulation results show that this design significantly out-
performs previous approaches. Future work leads into three di-
rections. First, we will extend this design to generate robust re-
sults with noisy distance measurements. Second, we are going
to investigate the theoretical bound of localizability using poly-
nomial spatial-temporal cost. Lastly, we will apply our design
in our ongoing system, GreenObs, and further examine its ap-
plicability in the real system.
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